281 research outputs found

    Nonuniform collective dissolution of bubbles in regular pore networks

    Get PDF
    Understanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, Bk/â„“, where the constant â„“ is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset

    Laparoscopic Camera Based on an Orthogonal Magnet Arrangement

    Get PDF
    In this letter, we present for the first time a magnetic anchoring-actuation link with an auto-flip feature. This orthogonal magnetic arrangement relies on the placement of two permanent magnets such that their magnetic moments are respectfully orthogonal. Though the arrangement may have many applications, in this study we integrate it in a small factor magnetic camera for minimally invasive procedures. Upon insertion through a trocar incision, the 5.5 mm diameter and 35 mm length magnetic camera is coupled with an external robotic controller and displaced from the port thus preventing clutter of the surgical workspace. The device allows for manual lateral translation as well as robotically controlled tilt and pan, resulting in four degrees of freedom. The auto-flip feature prevents the need for image adjustment in software as the camera tilts through its hemispherical workspace. A static model that relates an input external control tilt and output camera tilt has been developed and validated. Favorable results during bench and canine cadaver evaluation suggest promise for the proposed magnetic camera to improve the state of art in minimally invasive surgical procedures

    A disposable continuum endoscope using piston-driven parallel bellow actuator

    Get PDF
    This paper presents a novel low cost disposable continuum endoscope based on a piston-driven parallel bellow actuator design. The parallel bellow actuator achieves motion by being pressurized via displacement-controlled pistons. The displacements are generated by rack-and-pinion mechanisms using inexpensive stepper motors. The design concept provides a potential alternative solution to upper gastrointestinal (UGI) diagnosis. The modularity and the use of inexpensive components allow for low fabrication costs and disposability. The use of robotic assistance could facilitate the development of an easier interface for the gastroenterologists, avoiding the nonintuitive manipulation mapping of the traditional UGI endoscopes. We adapt existing kinematic solutions of multi-backbone continuum robots to model continuum parallel bellow actuators. An actuation compensation strategy is presented and validated to address the pneumatic compressibility through the transmission lines. The design concept was prototyped and tested with a custom control platform. The experimental validation shows that the actuation compensation was demonstrated to significantly improve orientation control of the endoscope end-effector. This paper shows the feasibility of the proposed design and lays the foundation toward clinical scenarios

    Closed-Loop Control of Local Magnetic Actuation for Robotic Surgical Instruments

    Get PDF
    We propose local magnetic actuation (LMA) as an approach to robotic actuation for surgical instruments. An LMA actuation unit consists of a pair of diametrically magnetized single-dipole cylindrical magnets, working as magnetic gears across the abdominal wall. In this study, we developed a dynamic model for an LMA actuation unit by extending the theory proposed for coaxial magnetic gears. The dynamic model was used for closed-loop control, and two alternative strategies-using either the angular velocity at the motor or at the load as feedback parameter-were compared. The amount of mechanical power that can be transferred across the abdominal wall at different intermagnetic distances was also investigated. The proposed dynamic model presented a relative error below 7.5% in estimating the load torque from the system parameters. Both the strategies proposed for closed-loop control were effective in regulating the load speed with a relative error below 2% of the desired steady-state value. However, the load-side closed-loop control approach was more precise and allowed the system to transmit larger values of torque, showing, at the same time, less dependence from the angular velocity. In particular, an average value of 1.5 mN·m can be transferred at 7 cm, increasing up to 13.5 mN·m as the separation distance is reduced down to 2 cm. Given the constraints in diameter and volume for a surgical instrument, the proposed approach allows for transferring a larger amount of mechanical power than what would be possible to achieve by embedding commercial dc motors

    O comportamento do aluno em um curso a distância dentro do ambiente Moodle: contrapontos entre a ótica inicial e seu uso atual.

    Get PDF
    O objetivo deste trabalho é analisar as dificuldades apresentadas pelos alunos de cursos em EaD. Para tanto, utilizou-se dados extraídos de um questionário de inscrição para um curso on-line, em que era solicitado aos alunos que listassem seus maiores problemas com os cursos que já haviam feito. Puderam ser identificadas seis categorias de problemas com: AVA, tutor, técnicos, de organização, de colaboração e de conteúdo

    Magnetic Surgical Instruments for Robotic Abdominal Surgery.

    Get PDF
    This review looks at the implementation of magnetic-based approaches in surgical instruments for abdominal surgeries. As abdominal surgical techniques advance toward minimizing surgical trauma, surgical instruments are enhanced to support such an objective through the exploration of magnetic-based systems. With this design approach, surgical devices are given the capabilities to be fully inserted intraabdominally to achieve access to all abdominal quadrants, without the conventional rigid link connection with the external unit. The variety of intraabdominal surgical devices are anchored, guided, and actuated by external units, with power and torque transmitted across the abdominal wall through magnetic linkage. This addresses many constraints encountered by conventional laparoscopic tools, such as loss of triangulation, fulcrum effect, and loss/lack of dexterity for surgical tasks. Design requirements of clinical considerations to aid the successful development of magnetic surgical instruments, are also discussed

    Independent Control of Multiple Degrees of Freedom Local Magnetic Actuators with Magnetic Cross-coupling Compensation

    Get PDF
    This letter tackles the problem of independent control of multiple degrees of freedom (DoF) systems based on local magnetic actuation (LMA). This is achieved by means of a modular disturbance rejection scheme, with the aim of enhancing the range of use of multiple-DoF LMAs in dexterous surgical manipulators. An LMA actuation unit consists of a pair of permanent magnets, characterized by diametrical magnetization, acting as magnetic gears across the abdominal wall. In this study, the model of the LMA and the time-varying magnetic disturbances owing to the proximity of multiple units are discussed. Subsequently, the developed model is capitalized in order to establish a Kalman state observer for the purpose of developing a sensor-free endoscopic manipulator suited to infer the state of the internal side of the LMA. Afterwards, the same model is used to develop an adaptive feedforward compensator system, with the aim of balancing the magnetic torques acting on the LMAs from the neighboring units in the case of unknown and frequency-varying sinusoidal disturbances. The effect of a magnetic shield, realized by means of MuMetal is also analyzed. The overall control system is modular with respect to the number of units and requires no centralized intelligence. The proposed scheme is subsequently validated by means of experiments performed on a benchtop platform, showing the effectiveness of the proposed approach. In particular, the proposed state observer presents a root mean square error (RMSE) ranging from 28 to 47 rpmin the estimation of the rotational velocity of the internal magnet and an RMSE of 1.18 to 1.41 mNm in the estimation of a load torque. The disturbance compensation system provides a reduction of 40% to 50% in the disturbance caused by interacting LMA units

    Rapid short-pulse sequences enhance the spatiotemporal uniformity of acoustically driven microbubble activity during flow conditions

    Get PDF
    Despite the promise of microbubble-mediated focused ultrasound therapies, in vivo findings have revealed over-treated and under-treated regions distributed throughout the focal volume. This poor distribution cannot be improved by conventional pulse shapes and sequences, due to their limited ability to control acoustic cavitation dynamics within the ultrasonic focus. This paper describes the design of a rapid short-pulse (RaSP) sequence which is comprised of short pulses separated by μs off-time intervals. Improved acoustic cavitation distribution was based on the hypothesis that microbubbles can freely move during the pulse off-times. Flowing SonoVue® microbubbles (flow velocity: 10 mm/s) were sonicated with a 0.5 MHz focused ultrasound transducer using RaSP sequences (peak-rarefactional pressures: 146–900 kPa, pulse repetition frequency: 1.25 kHz, and pulse lengths: 5–50 cycles). The distribution of cavitation activity was evaluated using passive acoustic mapping. RaSP sequences generated uniform distributions within the focus in contrast to long pulses (50 000 cycles) that produced non-uniform distributions. Fast microbubble destruction occurred for long pulses, whereas microbubble activity was sustained for longer durations for shorter pulses. High-speed microscopy revealed increased mobility in the direction of flow during RaSP sonication. In conclusion, RaSP sequences produced spatiotemporally uniform cavitation distributions and could result in efficient therapies by spreading cavitation throughout the treatment area

    Dual-Continuum Design Approach for Intuitive and Low-Cost Upper Gastrointestinal Endoscopy

    Get PDF
    Objective: This paper introduces a methodology to design intuitive, low-cost, and portable devices for visual inspection of the upper gastrointestinal tract. Methods: The proposed approach mechanically couples a multi-backbone continuum structure, as the user interface, and a parallel bellows actuator, as the endoscopic tip. Analytical modeling techniques derived from continuum robotics were adopted to describe the endoscopic tip motion from user input, accounting for variations in component size and pneumatic compressibility. The modeling framework was used to improve intuitiveness of user-to-task mapping. This was assessed against a 1:1 target, while ease-of-use was validated using landmark identification tasks performed in a stomach simulator by one expert and ten non-expert users; benchmarked against conventional flexible endoscopy. Pre-clinical validation consisted of comparative trials in in-vivo porcine and human cadaver models. Results: Target mapping was achieved with an average error of 5∘5^\circ in bending angle. Simulated endoscopies were performed by an expert user successfully, within a time comparable to conventional endoscopy ( << 1 min difference). Non-experts using the proposed device achieved visualization of the stomach in a shorter time (9 s faster on average) than with a conventional endoscope. The estimated cost is << 10 USD and << 30 USD for disposable and reusable parts, respectively. Significance and Conclusions: Flexible endoscopes are complex and expensive devices, actuated via non-intuitive cable-driven mechanisms. They frequently break, requiring costly repair, and necessitate a dedicated reprocessing facility to prevent cross contamination. The proposed solution is portable, inexpensive, and easy to use, thus lending itself to disposable use by personnel without formal training in flexible endoscopy

    Parallel Helix Actuators for Soft Robotic Applications

    Get PDF
    Fabrication of soft pneumatic bending actuators typically involves multiple steps to accommodate the formation of complex internal geometry and the alignment and bonding between soft and inextensible materials. The complexity of these processes intensifies when applied to multi-chamber and small-scale (~10 mm diameter) designs, resulting in poor repeatability. Designs regularly rely on combining multiple prefabricated single chamber actuators or are limited to simple (fixed cross-section) internal chamber geometry, which can result in excessive ballooning and reduced bending efficiency, compelling the addition of constraining materials. In this work, we address existing limitations by presenting a single material molding technique that uses parallel cores with helical features. We demonstrate that through specific orientation and alignment of these internal structures, small diameter actuators may be fabricated with complex internal geometry in a single material—without- additional design-critical steps. The helix design produces wall profiles that restrict radial expansion while allowing compact designs through chamber interlocking, and simplified demolding. We present and evaluate three-chambered designs with varied helical features, demonstrating appreciable bending angles (>180°), three-dimensional workspace coverage, and three-times bodyweight carrying capability. Through application and validation of the constant curvature assumption, forward kinematic models are presented for the actuator and calibrated to account for chamber-specific bending characteristics, resulting in a mean model tip error of 4.1 mm. This simple and inexpensive fabrication technique has potential to be scaled in size and chamber numbers, allowing for application-specific designs for soft, high-mobility actuators especially for surgical, or locomotion applications
    • …
    corecore